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Example: A Keyserver

Stateful protocols:

• Global mutable state spanning multiple sessions

Scenario:

• A server maintains a database of public keys for users
• Set valid(A) of valid keys of user A
• Set revoked(A) of revoked keys of user A

• Each user A has a keyring ring(A).

3 DTU Compute Automated and machine-verified security proofs of stateful protocols May 22, 2019



Example: A Keyserver

outOfBand(A:honest)
new PK
insert PK ring(A)
insert PK valid(A)
send PK.

Joint transaction between an agent A and the keyserver.
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Example: A Keyserver

updateKey(A:honest,PK:value)
PK in ring(A)
new NPK
delete PK ring(A)
insert NPK ring(A)
send sign(inv(PK),NPK).

updateKeyServer(A:honest,PK:value,NPK:value)
receive sign(inv(PK),NPK)
PK in valid(A)
NPK notin valid(A)
NPK notin revoked(A)
delete PK valid(A)
insert PK revoked(A)
insert NPK valid(A).
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Example: A Keyserver

oopsEvent(A:honest,PK:value)
PK in revoked(A)
send inv(PK).

authAttack(A:honest,PK:value)
receive inv(PK)
PK in valid(A)
attack.

There is an attack if there exists a run of the protocol in which the
authAttack transaction fires
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Over-Approximation

Popular approach in protocol verification: Ask the question:
“What messages can the intruder ever learn in any reachable state?”

To keep things decidable we over-approximate and restrict the intruder
to a typed model

• Not all abstract states are feasible in the real world,
• but we are on the safe side (it is a sound over-approximation).

pk1, pk2, . . .
sign(inv(pk′

1), npk1), sign(inv(pk′
2), npk2), . . .

inv(pk′′
1), inv(pk′′

2), . . .
npk1, npk2, . . .
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Over-Approximation

Popular approach in protocol verification: Ask the question:
“What messages can the intruder ever learn in any reachable state?”

To keep things decidable we over-approximate and restrict the intruder
to a typed model

• Not all abstract states are feasible in the real world,
• but we are on the safe side (it is a sound over-approximation).

PK ,
sign(inv(PK ′), NPK ),
inv(PK ′′)
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Set-Based Abstraction

How do we handle the databases?
Idea: abstract all keys by their set memberships.

=⇒

• Implemented in AIF/AIF-ω and Set-π (similar ideas in StatVerif and
GSVerif)
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Example: The Fixed-Point for the Keyserver

PK ,
sign(inv(PK ′), NPK ),
inv(PK ′′)
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Example: The Fixed-Point for the Keyserver

{ring(A)},
sign(inv(∅), {ring(A)}),
inv({revoked(A)})

{ring(A)}
ssss (( (({ring(A), valid(A)}

++ ++

∅
vvvv

{valid(A)}
����

{revoked(A)}
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Example: The Fixed-Point for the Keyserver
{ring(A)},
sign(inv(∅), {ring(A)}),
inv({revoked(A)})

{ring(A)}
ssss (( (({ring(A), valid(A)}

++ ++

∅
vvvv

{valid(A)}
����

{revoked(A)}

• The intruder also knows, e.g.,
sign(inv({valid(A)}), {revoked(A)})

• Since the attack signal does not occur in the fixed-point the keyserver
protocol is secure
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Should we trust the output of verification tools?
Automatic Interactive
(OFMC, AIF-ω, GSVerif, ...) (Isabelle, Coq, Twelf, ...)
May contain bugs Extremely high
⇒ flawed security claims! correctness guarantee

Automated Requires a lot of
expertise

Fast Time consuming and can be tedious

• Goal: Use automatic methods to obtain a “proof” for proof assistants to
check, combining the advantages of both

• Every proof accepted by Isabelle/HOL is machine-verified
• Every proof argument is verified down to the axioms
•We only have to trust the small core of Isabelle
• Subtle assumptions cannot be overlooked
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What we are doing

1 Proved a theorem for protocol security in Isabelle. Roughly,

Theorem
If FP is a fixed-point that covers the protocol P, and the attack signal
does not occur in FP, then P is secure

2 The conditions to check falls within the executable fragment of Isabelle
• They are automatically verifiable
• The checks terminate (assuming reasonable conditions on the
protocol specifications)

3 Extended the OFMC tool to support stateful protocols: nuFMC

4 Connected nuFMC to the Isabelle formalization
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Tool Overview
Isabelle/HOL

Protocol specification

nuFMC

Setup

Checks

translation

fixed-point

3?
7?

failure

verified security proof
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Demo
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Relative Soundness

• Our work is embedded into a whole framework for protocol verification in
Isabelle

• nuFMC, like many other tools, assumes a typed model in which the
intruder is restricted in what it can construct

•We have previously proven a typing result in Isabelle, namely that the
restriction is sound for a large class of protocols: the type-flaw resistant
protocols

• Thus, simply proving that the protocol is a member of this class lifts a
typed-model proof of nuFMC to a proof for the untyped model as well

•We automatically check for type-flaw resistance

• In the future: automated checking of parallel composition conditions
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Conclusion
We integrate an automatic protocol verification tool (nuFMC) with a
proof assistant (Isabelle)

• Support for stateful protocols

• Completely automatic
• Computing the fixed-point with nuFMC is automatic
• The checks performed in Isabelle are also automatic

• Extremely high correctness guarantee
• Isabelle verifies the output of nuFMC

• Is embedded into a whole framework for protocol verification in Isabelle
• Allows us to automatically apply a typing result, lifting the security
proofs from a typed model to an untyped one
• It is possible to manually apply parallel compositionality results
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