
An Equivalence Result Between Linear Logic and
Process Calculi

Alessandro Bruni

(Joint work with Eike Ritter and Carsten Schürmann)

Center for Information Security and Trust

Øresund Security Day 2019

Problem: precisely analysing security protocols

Example

free c: channel.

free s: channel[private].

query attacker(new secret_).

process

(new secret_:bitstring; out(s, secret_) |

in(s, x:bitstring); in(s, y:bitstring); out(c, x))

Shows a false attack in ProVerif (and other tools)

1. Can we use linear logic to reason precisely about concurrent
communicating processes, security protocols in particular?

2. Is there a semantic gap between linear logic formulas with
their turnstyle relation and process algebras with their
reductions?

Short answer: Yes, and yes!

Long answer

Let’s start simple:

I CCS: P,Q ::= 0 | a | a.P | (P |Q)

I LL: A,B ::= 1 | a | A−◦B | A⊗ B

Example:

a | a.b | b.c → b | b.c → c

We can prove in linear logic:

1. a⊗ (a−◦b)⊗ (b−◦c) ` b ⊗ (b−◦c)

2. a⊗ (a−◦b)⊗ (b−◦c) ` c

But also:

3. a⊗ (a−◦b)⊗ (b−◦c) ` a⊗ (a−◦c)

Semantics

Stuctural equivalence:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

Reaction semantics for CCS:

a.P | a→ P
P → P ′

P | Q → P ′ | Q
P ≡ ◦ → ◦ ≡ Q

P → Q

Reduction in n steps:

P →0 Q iff P ≡ Q P →i+1 Q iff P → P ′ and P ′ →i Q

Translation into Linear Logic

[[a.P]] = a−◦[[P]] [[0]] = 1 [[a]] = a [[P | Q]] = [[P]]⊗ [[Q]]

The weird one out

a | a.b | b.c 6→ a | a.c
↓

[[·]]
↓

a⊗ (a−◦b)⊗ (b−◦c) ` a⊗ (a−◦c)

Let’s look at the proof:

a ` a

a ` a
b ` b c ` c
b, b−◦c ` c

−◦L

a, a−◦b, b−◦c ` c
−◦L

a−◦b, b−◦c ` a−◦c −◦R

a, a−◦b, b−◦c ` a⊗ (a−◦c)
⊗R

a⊗ (a−◦b)⊗ (b−◦c) ` a⊗ (a−◦c)
⊗L2

Annotated Linear Logic

A `0 A
ax ∆ `i C

∆, 1 `i C
1L

· `0 1
1R

∆1 `i A ∆2,B `j C
∆1,∆2,A−◦B `i+j+1 C

−◦L B `i C
a−◦B `i a−◦C

−◦S

∆,A,B `i C
∆,A⊗ B `i C

⊗L ∆1 `i A ∆2 `j B
∆1,∆2 `i+j A⊗ B

⊗R

(The index i on `i counts the −◦L applications in the current branch)

Is this a logic?

Yes! It has Cut-elimination:

Theorem (Cut)

If ∆1 `i A and ∆2,A `j C , then ∆1,∆2 `i+j C .

Proof.
By induction on i and then structural induction on the
derivations.

Soundness and Completeness

Theorem (Completeness)

Let P be a list of processes, Q a process, i ∈ N. If [[P]] `i [[Q]]
then

∏
P∈P P →i Q.

Theorem (Soundness)

Let P be a list of processes, Q a process, i ∈ N. If
∏

P∈P P →i Q
then [[P]] `i [[Q]].

Moving to the π-calculus

Processes:

P,Q ::= 0

| out(M,N)

| in(M, x);P

| !P

| P | Q
| new u;P

| let x = g(M) in P

| if M = N then P

| reduc ∀x1, . . . , xn; g(M1, . . . ,Mn) = N

A Translation for the Applied Pi-calculus

[[in(M, x);P]] = ∀ x .msg(M, x)−◦[[P]]

[[out(M,N)]] = msg(M,N)

[[new u;P]] = ∃ u. [[P]]

[[P | Q]] = [[P]]⊗ [[Q]]

[[let x = g(~M) inP]] =
(
∃ c . red(c , g(~M))⊗ ∀ x . res(c , x)−◦[[P]]

)
[[if M=N thenP]] = (∃ c . eq(c ,M)⊗ (eq(c ,N)−◦[[P]]))

[[!P]] =![[P]]

[[0]] = 1

[[reduc ∀~x ; g(~M)→ N]] =!∀ c , ~x . red(c , g(~M))−◦res(c ,N)

Proofs (WIP)

Operational semantics and proof system with explicit substitutions:

Γ; ρ;P → Γ′; ρ′;P ′

Γ; ∆[ρ] ` A[ρ′]

Lemma (Soundness)

Let Γ; ρ;P and Γ′; ρ′;P ′ be two configurations, let K = [[P]] and
K ′ = [[P ′]]. If Γ; ρ;P → Γ′; ρ′;P ′ then ·;∃Γ. K [ρ] ` ∃Γ′. K ′[ρ′].

Completeness

(WIP)

It’s not Curry-Howard, but close

I Curry-Howard isomorphisms relate programs and logic
formulas, e.g.:

I natural deduction ↔ λ-calculus, linear logic ↔ π-calculus

I Here we rather use linear logic as a logical framework for
reasoning about concurrent communicating systems

I The approach extends to analyzing for example cryptographic
protocols, as shown

Outlook

I The power of a⊗ (a−◦b)⊗ (b−◦c) ` a⊗ (a−◦c) (Resolution)

I Skolemizing intuitionistic linear logic

