An Equivalence Result Between Linear Logic and Process Calculi

Alessandro Bruni
(Joint work with Eike Ritter and Carsten Schürmann)

Center for Information Security and Trust

Øresund Security Day 2019

Problem: precisely analysing security protocols

Example

```
free c: channel.
free s: channel[private].
query attacker(new secret_).
process
    (new secret_:bitstring; out(s, secret_) |
        in(s, x:bitstring); in(s, y:bitstring); out(c, x))
```

Shows a false attack in ProVerif (and other tools)

1. Can we use linear logic to reason precisely about concurrent communicating processes, security protocols in particular?
2. Is there a semantic gap between linear logic formulas with their turnstyle relation and process algebras with their reductions?

Short answer: Yes, and yes!

Long answer

Let's start simple:

- CCS: $P, Q::=0|\bar{a}| a . P \mid(P \mid Q)$
- LL: $A, B::=1|a| A \multimap B \mid A \otimes B$

Example:

$$
\bar{a}|a \cdot \bar{b}| b \cdot \bar{c} \rightarrow \bar{b} \mid b \cdot \bar{c} \rightarrow \bar{c}
$$

We can prove in linear logic:

$$
\begin{aligned}
& \text { 1. } a \otimes(a-b) \otimes(b \multimap c) \vdash b \otimes(b \multimap c) \\
& \text { 2. } a \otimes(a \multimap b) \otimes(b \multimap c) \vdash c
\end{aligned}
$$

But also:

$$
\text { 3. } a \otimes(a \multimap b) \otimes(b \multimap c) \vdash a \otimes(a \multimap c)
$$

Semantics

Stuctural equivalence:

$$
P|0 \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R
$$

Reaction semantics for CCS:

$$
\begin{array}{lll}
\text { a.P } P \rightarrow P & \frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q} \quad \frac{P \equiv \circ \rightarrow \circ \equiv Q}{P \rightarrow Q}
\end{array}
$$

Reduction in n steps:

$$
P \rightarrow^{0} Q \text { iff } P \equiv Q \quad P \rightarrow^{i+1} Q \text { iff } P \rightarrow P^{\prime} \text { and } P^{\prime} \rightarrow^{i} Q
$$

Translation into Linear Logic

$$
\llbracket a \cdot P \rrbracket=a-\bigcirc \llbracket P \rrbracket \quad \llbracket 0 \rrbracket=1 \quad \llbracket \bar{a} \rrbracket=a \quad \llbracket P \mid Q \rrbracket=\llbracket P \rrbracket \otimes \llbracket Q \rrbracket
$$

The weird one out

$$
\begin{array}{cc}
\bar{a}|a \cdot \bar{b}| b \cdot \bar{c} \nrightarrow & \bar{a} \mid a \cdot \bar{c} \\
\downarrow & \\
\llbracket \cdot \rrbracket & \\
\downarrow & \\
a \otimes(a-\infty b) \otimes(b-o c) \vdash & a \otimes(a-o c)
\end{array}
$$

Let's look at the proof:

$$
\begin{gathered}
\frac{a \vdash a \frac{b \vdash b \quad c \vdash c}{b, b-c \vdash c}-\infty L}{a, a-b, b-c \vdash c}-L \\
\frac{a \vdash a}{a, a-b, b-c \vdash b-a \otimes(a-c)} \otimes R \\
a \otimes(a-b) \otimes(b-c) \vdash a \otimes(a-c)
\end{gathered} L^{2} .
$$

Annotated Linear Logic

$$
\begin{gathered}
\frac{\Delta \vdash^{0} A}{a x} \quad \frac{\Delta \vdash^{i} C}{\Delta, 1 \vdash^{i} C} 1 L \quad \frac{\vdash^{0} 1}{} 1 R \\
\frac{\Delta_{1} \vdash^{i} A \quad \Delta_{2}, B \vdash^{j} C}{\Delta_{1}, \Delta_{2}, A \multimap B \vdash^{i+j+1} C} \multimap L \quad \frac{B \vdash^{i} C}{a \multimap B \vdash^{i} a \multimap C} \multimap S \\
\frac{\Delta, A, B \vdash^{i} C}{\Delta, A \otimes B \vdash^{i} C} \otimes L \\
\frac{\Delta_{1} \vdash^{i} A \quad \Delta_{2} \vdash^{j} B}{\Delta_{1}, \Delta_{2} \vdash^{i+j} A \otimes B} \otimes R
\end{gathered}
$$

(The index i on \vdash^{i} counts the $\multimap L$ applications in the current branch)

Is this a logic?

Yes! It has Cut-elimination:
Theorem (Cut)
If $\Delta_{1} \vdash^{i} A$ and $\Delta_{2}, A \vdash^{j} C$, then $\Delta_{1}, \Delta_{2} \vdash^{i+j} C$.
Proof.
By induction on i and then structural induction on the derivations.

Soundness and Completeness

Theorem (Completeness)
Let \mathcal{P} be a list of processes, Q a process, $i \in \mathbb{N}$. If $\llbracket \mathcal{P} \rrbracket \vdash^{i} \llbracket Q \rrbracket$ then $\prod_{P \in \mathcal{P}} P \rightarrow^{i} Q$.

Theorem (Soundness)
Let \mathcal{P} be a list of processes, Q a process, $i \in \mathbb{N}$. If $\prod_{P \in \mathcal{P}} P \rightarrow^{i} Q$ then $\llbracket \mathcal{P} \rrbracket \vdash^{i} \llbracket Q \rrbracket$.

Moving to the π-calculus

Processes:

$$
\begin{aligned}
P, Q:: & =0 \\
& \mid \operatorname{out}(M, N) \\
& \mid \operatorname{in}(M, x) ; P \\
& \mid!P \\
& |P| Q \\
& \mid \text { new } u ; P \\
& \mid \text { let } x=g(M) \text { in } P \\
& \mid \text { if } M=N \text { then } P \\
& \mid \text { reduc } \forall x_{1}, \ldots, x_{n} ; g\left(M_{1}, \ldots, M_{n}\right)=N
\end{aligned}
$$

A Translation for the Applied Pi-calculus

$$
\begin{aligned}
\llbracket \operatorname{in}(M, x) ; P \rrbracket & =\forall x \cdot \operatorname{msg}(M, x)-\odot \llbracket \rrbracket \rrbracket \\
\llbracket \operatorname{out}(M, N) \rrbracket & =\operatorname{msg}(M, N) \\
\llbracket \operatorname{new} u ; P \rrbracket & =\exists u \cdot \llbracket P \rrbracket \\
\llbracket P \mid Q \rrbracket & =\llbracket P \rrbracket \otimes \llbracket Q \rrbracket
\end{aligned}
$$

$$
\llbracket \operatorname{let} x=g(\vec{M}) \text { in } P \rrbracket=(\exists c \cdot \operatorname{red}(c, g(\vec{M})) \otimes \forall x \cdot \operatorname{res}(c, x) \multimap \llbracket P \rrbracket)
$$

$$
\llbracket \text { if } M=N \text { then } P \rrbracket=(\exists c \text {. eq }(c, M) \otimes(\mathrm{eq}(c, N) \multimap \llbracket P \rrbracket))
$$

$$
\llbracket!P \rrbracket=!\llbracket P \rrbracket
$$

$$
\llbracket 0 \rrbracket=1
$$

$\llbracket \operatorname{reduc} \forall \vec{x} ; g(\vec{M}) \rightarrow N \rrbracket=!\forall c, \vec{x} . \operatorname{red}(c, g(\vec{M}))-\operatorname{ores}(c, N)$

Proofs (WIP)

Operational semantics and proof system with explicit substitutions:

$$
\begin{gathered}
\Gamma ; \rho ; \mathcal{P} \rightarrow \Gamma^{\prime} ; \rho^{\prime} ; \mathcal{P}^{\prime} \\
\Gamma ; \Delta[\rho] \vdash A\left[\rho^{\prime}\right]
\end{gathered}
$$

Lemma (Soundness)
Let $\Gamma ; \rho ; \mathcal{P}$ and $\Gamma^{\prime} ; \rho^{\prime} ; \mathcal{P}^{\prime}$ be two configurations, let $K=\llbracket \mathcal{P} \rrbracket$ and $K^{\prime}=\llbracket \mathcal{P}^{\prime} \rrbracket$. If $\Gamma ; \rho ; \mathcal{P} \rightarrow \Gamma^{\prime} ; \rho^{\prime} ; \mathcal{P}^{\prime}$ then $\cdot ; \exists \Gamma . K[\rho] \vdash \exists \Gamma^{\prime} . K^{\prime}\left[\rho^{\prime}\right]$.

Completeness
(WIP)

It's not Curry-Howard, but close

- Curry-Howard isomorphisms relate programs and logic formulas, e.g.:
- natural deduction $\leftrightarrow \lambda$-calculus, linear logic $\leftrightarrow \pi$-calculus
- Here we rather use linear logic as a logical framework for reasoning about concurrent communicating systems
- The approach extends to analyzing for example cryptographic protocols, as shown

Outlook

- The power of $a \otimes(a-b) \otimes(b-c) \vdash a \otimes(a-c)$ (Resolution)
- Skolemizing intuitionistic linear logic

