
Defeating Android security solutions by exploiting
fuzzy hashing (updated)

Arash Vahidi
RISE

Øresund Security Day, 2019



The early morning opening slide...

There are two types of crypto talks...

1. ” We present a third preimage attack on reduced round
Shenanigans-256, improving attack complexity from 2∞ to a
much more reasonable 2∞∗0.91 ”.

2. ” We poked at this thing until it fell apart ”.



Motivation

I Automatic analysis of foreign files is sometimes the only line
of defence in computer systems.

I A number of Android security tools depend on reliable
automatic analysis of apps (APKs).

I But how can a computer program learn to recognize classes of
unwanted/vulnerable/malicious software? And how easy can
it be fooled?

We consider two types of threats

1. Concealment: a component is not detected

2. Forgery: a component is misidentified



Example

I Facebook SDK libraries included in many apps call home
without user consent1.

I Android privacy & security tools such as REAPER,
PINPOINT, SweetDroid, and ART attempt to isolate the
offending library and cut its access to your data and the
network.

1https://privacyinternational.org/report/2647/how-apps-android-share-
data-facebook-report



Current approaches

I ”Reliable Third-Party Library Detection in Android and its
Security Applications”, Backes et al. use a Merkle tree on
simplified bytecode.

I ”Orlis: Obfuscation-Resilient Library Detection for Android”,
Wang et al. use a two stage detection methods using two
different fuzzy hash algorithms.

I ”LibRadar: Fast and Accurate Detection of Third-party
Libraries in Android Apps”, Ma et al. use a Merkle tree on
class API calls.

I ”LibD: Scalable and Precise Third-party Library Detection in
Android Markets”, Li et al. use a Merkle tree on CFG hash
chain.



Regarding targeted algorithms...

(this page was added after the presentation)

As mentioned during the presentation, we noted that the published
description does not always match the provided implementation.

Since the goal of this paper is demonstrating fuzzy hashing issues,
we will consider two generic approaches (A and B) and will make
no further claims about breaking any particular algorithms.



Anatomy of an Android application

example

org

MyClass

com

mozilla

myFunction

facebook

login

LoginClient

authorizecancel

.method authorize()
const/4 v2, #22
mul-int v1, v2, v3
move v4, v3
...



Hash trees

In a hash tree each node has a message that is a combination of
that nodes data and labels of its children. A nodes label is the
digest of this message:

a1=H{Y1} a2=H{Y2}

a3=H{a1 + a2} a4=...

a5=H{a3 + a4}

(Merkle trees are a variation of hash trees)



Do you see where this is going?

a1=H{Y1} a2=H{Y2}

a3=H{a1 + a2} a4=...

a5=H{a3 + a4}

example

org

MyClass

com

mozilla

myFunction

facebook

login

LoginClient

authorizecancel



A naive identification strategy

A naive approach would be to store label of all library nodes in a
database. Unfortunately, this approach is very fragile due to the
following issues:

1. Package, class and method names may have been obfuscated
(or faked) 2

2. Use of different toolchains and optimization options

3. Minor changes to the code

Hence a method is needed that allows similar components to be
identified as ”equal”.

2For example, com.facebook.login.LoginClient.authorize() could be stored as
a.b.c.A.b()



Fuzzy hashing

A fuzzy hash Hφ is a context-aware hash that satisfies the following
property: Given two unequal inputs (f1 6= f2), the probability of
Hφ(f1) = Hφ(f2) should be higher the more similar the two are:

φ(f1, f2) ≥ 1− ε , 0 < ε� 1

A common example is

Hφ(x) = H(C (x))

where H is a normal hash function and C is a context aware lossy
compression.



Approach A

The first approach only consider calls to framework API:

a1=[API calls in this method]

a3=H1{ sort { a1 + a2} }

a5=H2{a3 . a4}

The rationale behind
this idea is that the calls
to the Android APIs
should represent a good
summary of what the
class does. Note that
sorting is required since
order in the bytecode
may change due to
obfuscation.



Approach B

With approach B, the leaf label is computed from the control flow
graph (CFG) of the corresponding methods. A block contains
simplified version of the bytecode where (almost) all instruction
parameters have been removed:

a1=H{ block 1 . min{ a2, a3, a4 } }block 1

block 2 block 3 block 4

block 5

a2=H{ block 2 . a5 }

a5=H{block 5}

The idea behind this
design is to discard some
details in each method
but still retain the core
structure.



Concealment

For approach A, in each package that has no sub-packages ones
adds a new class or performs an API call.

1. a′1 = [API0,API1, ...,API666]

2. a′5 = H{a3.a4.a666}

For approach B, one can modify or re-arrange the code to affect at
least one block that contributes to the final output. For example:

1. min{a′2, a3, a4} 6= min{a2, a3, a4}
2. block1′ 6= block1

Note that we must ensure our modifications are not removed by
the obfuscator / optimizer.



Concealment - example

Add the following code to the very beginning of a random function
to defeat both approaches:

Date d = new Date();

if(d.getMonth() == 42) { // false

Animator a = new Animator (); // API call

System.out.println(a.isRunning()); // use it

}



Forgery - approach A

The key to forgery in approach A is to remember that only classes
with API calls contribute to the final label. Hence we will use the
following recipe:

1. Select a victim library that uses a superset of the required API

2. Empty all classes, move API calls to dedicated methods

3. At this point the library should retain it’s original label

4. Populate the empty classes with own code

5. Instead of making direct API calls, use the dedicated functions
as proxies

(this makes some assumptions about class inheritance that may
not always hold)



Forgery - approach B

Approach B ignored two types of data: bytecode parameters (e.g.
A and B in ”mov A, B”) and CFG blocks that have a sibling with a
smaller label. The forgery attack uses this to create two disjoint
paths, one executed and one measured:

1. Select a victim library with a large number of methods that
start with an if-statement

2. In each victim function, find the first ignored block

3. Change the branch condition to always execute this block

4. Replace the victim block with own code (can be of any size,
as long as its label is larger)

This requires more computation than forgery for approach A.



Forgery - approach B - example

void method1(old, a, b, ...) {
if(old != 0) 
 return old;
else
 return a + b;
}

if old
== ?

return
old

return
a + b

a1=H{ "if old == ?" . min{ a1, a2} }

a2=H{ block "return old" }

a3=H{ block "return a + b" }



Forgery - approach B - example

void method1(old, a, b, ...) {
if(old == 5) 
 return old;
else {
 // evil code here
}
}

if old
== ?

return
old

evil
code

a1=H{ "if old == ?" . a1}

a2=H{ block "return old" }



Countermeasures

The main problem in these examples was that the behavior of the
compression function C (x) could easily be anticipated and
circumnavigated. To avoid such trivial attacks we recommend that:

1. More narrow properties of x are included, and it possible a
fuzzy parameter or threshold is applied

2. C (x) includes multiple overlapping properties of x

3. C (x) does not rely on properties that are easily translated to
code

While their quality and attack resilience is yet to be tested, this
might be a good fit for certain algorithms that use machine
learning and extract features from a large pool of feature
candidates.



THANK YOU


