Formalizing and Proving Privacy Properties of Voting
Protocols using Alpha-Beta Privacy

Formal methods and security protocol

Sébastien Gondron and Sebastian A. Modersheim

DTU Compute
Danmarks Tekniske Universitet

Mai 23, 2019

ELU

SIS R AT et Te [o1 eV T ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 1/30

Outline

© Running example: FOO'92

@ Defining Privacy Goals

© Alpha-Beta Privacy

@ FO0'92 in Alpha-Beta Privacy
© Stronger Privacy Properties

© Conclusion
ET‘U

>
>

ST R AT WY Te [o eV Te ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 2/30

Introduction

Running example: FOO'92

ASKING AIRCRAFT DESIGNERS |y [AGKING BUILDING ENGNEERS| | ABKING SOFTWARE
PABOUT ARPLANE SPFETY: || |ABOUT ELEVATR SPFETv: | || ENGINEERS ABOUT
NOTHING 15 EVER FOOLPROCE | ELEVATORS ARE PROTECTED By | LEOMPUTERIZED VOTNG:
BUT MODERN AIRUNERS ARE. | MULTIPLE. TRED-AND-TESTED

INCREDIBLY RESILENT. FLYING IS | FAILSAFE MECHANISMS, THEYRE | THATS TERRIFIVG.
THE SAFEST WAY TOTRAVEL. | NEARLY NCAPABLE OF FALLING. (

VAT, REALLY?

THEY SAY THEY'VE FIXED IT WITH

DON'T TRUST VOTING SOFTWARE. PND DONT SOMETHING CALLED “BLOCKCHAIN.'
LISTEN To ANYONE LIHO TELLS YOU [T6 SAFE. APARAIIL
uriv? WHATEVER THEY 50LD

T DON'T QUITE. KNOW HOW To PUT THIS, BUT
OUR ENTIRE FIELD IS BAD AT WHAT WE DO,
AND IFYDURELYDNl)ﬁ EVERYONE WAL DIE. UEPRGLDVES

- 30l i

Figure: xkcd - Voting Software
Formalizing and Proving Privacy Properties o

YOU, DONT TOUCH IT
BURYW'IMTHEDESERT

DTU

>
>
>

Mai 23, 2019 3/30

FOO'92 Protocol

Setup

A population of voters Vi,..., Vy.
Each voter V; has decided his or her vote v; € {0,1}.

ri (and later b;) are secret random numbers chosen by voter V;.

There is an administration A that controls who is a valid voter and
issues the ballots.

There is a counter C who collects all the ballots. C then publishes all
ballots in a random order.

@ We assume anonymous channels similar to onion routing like TOR,
and write [A]e~~eB for
o A has a secure channel with B, but with respect to a pseudonym of A,
so B does not know A but can send a reply that only A receives.
o The intruder cannot observe that A and B have communicated. ET’U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 4/30

Cryptographic Primitives

@ Blind signatures: m is a message and b is a blinding factor
o unblind(blind(m,b),b) = blind(m,b)
o sign(priv(A),blind(m,b))
o unblind(sign(priv(A),blind(m,b)),b) = sign(priv(A),m)
@ Bit-commitments: v is a message (a vote) and r is a randomization
value
o open(commit(v,r),r) = v

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 5/30

Running example: FOO'92

Protocol Narration

Phase 1

[Vi]e~>e A :sign(priv(V;), blind(commit(v;, r;), b))
Aee[V;] :sign(priv(A), blind(commit(v;, r;), b;))
Phase 2

[Vi] e~ C :sign(priv(A), commit(vi, r;))

C —all : sign(priv(A), commit(vy(j), r=(j))) for each j € {1,..., N}
Phase 3
[Vi]evwe C 1
C —all ry(j) for each j € {1,... N}
Table: Protocol description for FOO'92 in a style of an AnB language ELU
Formalizing and Proving Privacy Properties o Mai 23, 2019 6/30

The Goals

The Original Goals

From the paper [FOO'92]:
@ Completeness: All valid votes are counted correctly.
@ Soudness: The dishonest voter cannot disrupt the voting.
@ Privacy: All votes must be secret.
@ Unreusability: No voter can vote twice.
o Eligibility: Nothing must affect the voting.

o Verifiability: No one can falsify the result of voting.

ET‘U

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 7/30

The Goals

Privacy

P2
Figure: "2015 Election Ballot Counting” by City of Fort Collins, CO

Voting privacy: the number of votes and the result of the election are oTU
finally published. The intruder should not find out more than that about ==
voters and votes. e

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 8/30

Defining Privacy Goals

Encoding of frames

Definition (¢gen(D) and ¢ pame(F))

For a frame F = {{m1 — t1,..., m; — t;|} with domain

D ={my,...,m;}, a unary predicate gen and an interpreted unary
function symbol kng, we define the Herbrand logic formulae:

¢gen(D) = Vr.gen(r) <=

(reDvV \/ 3n,.. rar=f(r,...,r) Agen(rn) A...Agen(r,))
f1e¥op

Oframe(F) = knp[mi] = ti A ... A knp[my] =t A

/\ Vr, ..., rn: gen.knp[f(r, ..., rm)] = f(kng[n], ..., knp[rm)])
F1ETop

SIS R AT WY Te [o] eV Te ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 9/30

Defining Privacy Goals

Static equivalence of Frames

Definition (Static Equivalence of Frames)

A common approach is based on formulating pairs of worlds and the goal
that look the same to the intruder, written ~.

ET‘U

>
>

ST R AT WY Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 10 /30

Defining Privacy Goals

Static equivalence of Frames

Definition (Static Equivalence of Frames)

A common approach is based on formulating pairs of worlds and the goal
that look the same to the intruder, written ~.

We encode static equivalence of frames in Herbrand Logic:
Definition (¢~(F 1, F 2))

Let £1 and F > be frames with the same domain.

O~(F1,F2) = Vr,s: gen.knp [r] = knp [s] <= knp,[r] = knp,[s]

ET‘U

>
>

SIS R AT WY Te [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 10 /30

Defining Privacy Goals

Static Equivalence of Frames

The structural information

The intruder knows the structure of the messages, i.e. the specification of
the protocol is public:

struct = {|mo — pub(A), my — pub(V4), ..., m, — pub(Vy),
mp1 — sign(priv(A), commit(v[r[1]], r[x[1]])),- - -,
mop — sign(priv(A), commit(v[x[N]], r[x[N]])),
mans1 = o1, <. ms > r[[N]]]

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 11/30

Defining Privacy Goals

Static Equivalence of Frames

The concrete information

The intruder also knows the concrete messages that he observes:

concr = {{mg — pub(A), m; — pub(V1), ..., m, — pub(Vy),
my+1 — sign(priv(A), commit(0o(Vro(1))s Fro(1)))s - - - >
mop + sign(priv(A), commit(0o(V() Fro(n)))5

MaN+1 7 Fro(1)s -+ s M3N > Frg(N) [t

ET‘U

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 12 /30

Model-Theoretical Alpha-Beta Privacy

We specify two formulae:
@ « the high-level we deliberately reveal to the intruder/verifier /public

@ [the technical information like cryptographic messages that are
observable (including «)

ET‘U

>
>

ST R AT e Te [o1 eV T ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 13 /30

Model-Theoretical Alpha-Beta Privacy

We specify two formulae:
@ « the high-level we deliberately reveal to the intruder/verifier /public

@ [the technical information like cryptographic messages that are
observable (including «)

Definition (Model-theoretical («, 3)-privacy)

We say that («, 5)-privacy holds (model-theoretically) iff every ¥o-model

of o can be extended to a Y-model of 5. Here a X-interpretation Z’ is an
extension of a ¥ g-interpretation Z if they agree on all variables and all the
interpreted function and relation symbols of .

ET‘U

>
>

SIS R AT e Te [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 13 /30

Alpha-Beta Privacy

Example

Formula x1,x € {0,1} Axg +x =1
What are the models? (values of x; x» that makes the formula true).
90 = {Xl — 0,X2 — 1} and 91 = {Xl — 1,X2 — 0}.

ET‘U

>
>

ST R AT e e [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 14 /30

Alpha-Beta Privacy

The two visions of the world

@ 0y = a: an interpretation of the v; with {0, 1} that is a model of «,
i.e. the truve vote of every voter

@ 0; = «a: an arbitratry model called an intruder’s hypothesis, i.e. that
maps the v; to {0, 1} so that their sum is R

ET‘U

>
>

ST R AT e e [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 15 /30

Alpha-Beta Privacy

The two visions of the world

@ 0y = a: an interpretation of the v; with {0, 1} that is a model of «,
i.e. the truve vote of every voter

@ 0; = «a: an arbitratry model called an intruder’s hypothesis, i.e. that
maps the v; to {0, 1} so that their sum is R

Thus we can find a permutation ¢: {1,..., N} — {1,..., N} such that
(9/(V,‘) = Qo(vd,(,-)) for all i € {1, Ceey N}.

ET‘U

>
>

ST R AT e e [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 15 /30

Alpha-Beta Privacy

Example

Given three voters, i.e. N = 3 and the result of the vote is R = 2, the true

result of the vote 0y = {vi — 1,vo — 1, v3 — 0} and the actual

permutation be mg = (% % 3) the bulletin board is then:

J

12

3

Bulletin board

Vro(j)

0

1

Let us consider an intruder's hypothesis 6, =

One possible permutation) is then ¢ =

(3

{V1 —0,vo—1 vz — 1}.
23). Thenm = (323).

SIS R AT e e [o] eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o

Mai 23, 2019

DTU

>
>
>

16 /30

Alpha-Beta Privacy

Message-Analysis Problem

Definition (Message-analysis problem)

Let o be combinatoric, struct and concr be two frames with domain D.
We say that (is a message-analysis problem if
B = MsgAna(D, «, struct, concr) with:

MsgAna(D, o, struct, concr) = o A ¢gen(D) A P prame(struct)

A Gframe(concr) A ¢~.(struct, concr)

ET‘U

>
>

ST R AT el e [o eV T ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 17 /30

The goals encoded in Alpha-Beta Privacy

N
OéEVlG{0,1}/\.../\VN6{0,1}/\ZV;:R, (1)
i=1
N
B= (v[i] =viArli] = r,-) A MsgAna(D, a, struct, concr) (2)
i=1

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 18 /30

FOO'92 in Alpha-Beta Privacy

Defining the interpretation

We have to define an interpretation for the voting, commitment and the
permutation functions:

Definition (A model of the functions)

Let Z map v to the function Z(v): A — A, r to the function Z(r): A— A
and 7 to the function Z(7): A — A:

IW([tl=) = [01(ve)]l~ ifte[{1,..., N}~
~) = [yl ifte[{L,.... N}~
I(n)([tl~) = [m()l~ ifte[{1,..., N}~

ET‘U

>
>

SIS R AT e e [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 19 /30

FOO'92 in Alpha-Beta Privacy

Defining the interpretation

We also have to define an interpretation for the symbols gen, struct and
concr. They are independent from the considered protocol:

Definition (A model of gen, struct and concr)
Let D be the domain of the considered frames. Then we define

Z(gen) {[tl~ | t € Ts,un}
I(struct)([t]~) = Z(struct{|t]}) forall t € T5,
Z(concr)([t]~) Z(concr{t[}) for all t € Tx,

ET‘U

SIS B AT e e [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 20/30

FOO'92 in Alpha-Beta Privacy

Canonic construction

The previous definition gives rise to “canonical” construction independent
of the considered protocol:

Lemma

7 = bframe(struct) and I |= ¢ frame(concr).

Lemma

If Z(struct) = Z(concr) then T = ¢..(struct, concr).

ET‘U

>
>

ST R AT WS Te [oY eV T ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 21/30

Voting Privacy

Theorem

Voting privacy holds in the last state of the simplified FOO'92.

Idea of the proof:
e We already proved that Z |= ¢fame(struct) and Z |= ¢rame(concr)
@ We have to prove that Z(struct) = Z(concr)

ET‘U

>
>

SIS R AT WY Te [o] eV Te ST PSR ET WA ST [T Formalizing and Proving Privacy Properties o Mai 23, 2019 22/30

FOO'92 in Alpha-Beta Privacy

Proof Sketch

Z(v)([(¥ ™" o mo)(1)]=)

Z(v)([m1(7)]~)

Z(v)(Z(m)([i1~
[[9I(V¢ 1ro(i)))] r = [00(Vao(iy)]~
Z(r[=[i]) = Z(r)(Z(m) ([T~

= [rpoy—1om) (i)~ = [rro(i)]~

Z(r)(Imi()]~) =

CUIEL RS B A E WA VI IS Formalizing and Proving Privacy Properties o

~Homo)(i)]x)

DTU

>
>
>

Mai 23, 2019 23/30

Stronger Privacy Properties

Receipt-freeness

Definition

Receipt-freeness: no voter has a way to prove how they voted. This can
be indirectly expressed by saying: for everything that could have happened
according to a voting privacy scenario, the voter can make up a consistant
“story”.

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 24 /30

Stronger Privacy Properties

Receipt-freeness
Setup

@ We introduce a particular voter: Dan.

@ The question is whether Dan can prove to the intuder how he voted
by a kind of “receipt”.

e FOQO'92 is not receipt-free. ..

@ ...but it is in our simplified protocol, i.e. the intruder cannot see the
exchanges between the voters and the administrator.

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 25 /30

Receipt-freeness

Dan's knowledge

@ Dan's knowledge: concrp,, and structp,, over domain
Dpan = {d1,...,d}.

@ The idea is that what Dan can lie about is concrpan.

structpan = {|do — pub(A), d1 — pub(V1),...,d, — pub(Vy),

dni1 — sign(priv(A), commit(v[rx[1]], r[x[1]])), - -,

don — sign(priv(A), commit(v[r[N]], r[x[N]])),

dony1 = r[w[l]], ..., dsy = r[w[N]], dsys1 — priv(Dan), dsyi2 — v([1],
d3n43 = r[1], danqa — by}

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 26 /30

The Axiom of Lying

Grie(struct, concr, structpan, CONCrpan) =
struct[di] = structpan[di] A - - - A struct|d)] = structpan[d]]

A3si,...,s: genp,, -(concr{di] = concrpan[di] A -+ A concr[d|] = concrpan

ET‘U

>
>

SIS R T e Te [oY eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 27 /30

The Axiom of Lying

Grie(struct, concr, structpan, CONCrpan) =
struct[di] = structpan[di] A - - - A struct|d)] = structpan[d]]

A3si,...,s: genp,, -(concr{di] = concrpan[di] A -+ A concr[d|] = concrpan

Definition (Receipt-freeness problem)

RepFree(D, Dpan, «, struct, concr, structpan, CONCrpan)

= d)genDDan (DDan) A ¢frame(5trUCtDan) A ¢frame(conchan)

A MsgAna(D U Dpay, v, struct, concr)

A ¢jie(struct, concr, structpan, CONCrpan)

SIS R AT WY Te [o1 eV T ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 27 /30

Stronger Privacy Properties

Receipt-freeness
The lying strategy

Dan can choose any vote on the bulletin board consistant with the
intruder’s hypothesis!

S3N42 = open(retrieve(d,vw(l)), d2N+w(1)) and s3y43 = d2N+1ZJ(1)

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 28/30

Stronger Privacy Properties

Coercion-resistance

Coercion-resistance: no voter has a way to prove how they voted even
when the intruder can additionally require some values to be used in
advance. In other word, for everything that could have happened
according to a voting privacy scenario, the voter can make up a consistent
“story” even though the intruder has fixed part of the “story”.

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 29/30

Conclusion

Conclusion

@ Privacy goals are more subtle than standard secrecy!
o Relatively complicated notions like (observational) equivalence.
e Both hard for the modeler and automated tools.
@ «-f-privacy as an new way to specify more declaratively:
o what high-level information « we publish (or reveal to an intruder)
e and what low-level /cryptographic information 8 can be observed.
@ Privacy as a reachability problem: can we reach a state where 8
allows for an interesting derivation that « does not imply?

ET‘U

>
>

SIS R AT e Te [o1 eV Te ST PSR ET WAL [T Formalizing and Proving Privacy Properties o Mai 23, 2019 30/30

	Running example: FOO'92
	Defining Privacy Goals
	Alpha-Beta Privacy
	FOO'92 in Alpha-Beta Privacy
	Stronger Privacy Properties
	Conclusion

